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Introduction
Nonalcoholic fatty liver disease (NAFLD) is characterized by histology or imaging-defined hepatic steatosis, 
in the absence of secondary causes (1). NAFLD comprises a spectrum of pathology, ranging from steatosis 
to nonalcoholic steatohepatitis (NASH), which is a progressive form of NAFLD that can advance to cirrhosis 
and hepatocellular carcinoma (1). The development of NAFLD is linked to elevated BMI, central obesity, and 
the cardiometabolic syndrome (2, 3). Moreover, NAFLD may be a predictor for the development of diabetes 
mellitus and is an independent risk factor for cardiovascular disease (4, 5). Although NAFLD is connected to 
metabolic derangements associated with obesity, the pathways that link NAFLD, obesity, and cardiometabolic 
disease are poorly understood.

Metabolite profiling is an approach that has previously identified novel associations in diabetes mel-
litus and other cardiometabolic diseases in large community-based cohorts (6–11). To further elucidate 
the metabolic links among obesity, cardiometabolic disease, and NAFLD, we developed a metabo-
lite-profiling method that detects both positively and negatively charged analytes from a single sample 
preparation. Coupling amide chromatography (12) and tandem mass spectrometry (13), we optimized 
conditions for profiling of  human plasma samples.

Using this metabolite-profiling method, we evaluated the association between metabolites and cardio-
metabolic traits in the Framingham Heart Study Generation 3 (FHS Gen 3) cohort. We identified anan-
damide (AEA) as a candidate metabolite for cardiometabolic traits and then extended our findings in a 
hospital-based NAFLD cohort that demonstrated that AEA was associated with NAFLD severity. Cumu-
latively, these studies identify AEA as a candidate biomarker linking obesity and NAFLD.

The discovery of metabolite-phenotype associations may highlight candidate biomarkers 
and metabolic pathways altered in disease states. We sought to identify novel metabolites 
associated with obesity and one of its major complications, nonalcoholic fatty liver disease 
(NAFLD), using a liquid chromatography–tandem mass spectrometry method. In 997 individuals 
in Framingham Heart Study Generation 3 (FHS Gen 3), we identified an association between 
anandamide (AEA) and BMI. Further examination revealed that AEA was associated with 
radiographic hepatic steatosis. In a histologically defined NAFLD cohort, AEA was associated 
with NAFLD severity, the presence of nonalcoholic steatohepatitis, and fibrosis. These data 
highlight AEA as a marker linking cardiometabolic disease and NAFLD severity.
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Results
Metabolites associated with cardiometabolic traits in the Framingham Heart Study. 
Using a multifunctional approach that detects both positively and nega-
tively charged metabolites, we developed a metabolite-profiling method that 
assessed 179 analytes across important metabolic pathways (see Supplemen-
tal Methods for details; supplemental material available online with this arti-
cle; https://doi.org/10.1172/jci.insight.92989DS1). We analyzed plasma 
samples of  997 participants in FHS Gen 3, a longitudinal, community-based 
study that began enrollment in 2002. The clinical characteristics of  the cohort 
are shown in Table 1. Participants had no overt cardiovascular disease, had 
a mean age of  40 ± 9 years, a BMI of  26.6 ± 5.3 kg/m2, and a homeostatic 
model assessment of  insulin resistance (HOMA-IR) value of  1.04 ± 0.83.

In regression analyses adjusted for age and sex, we assessed metabo-
lite associations with cardiometabolic traits, including generalized obe-
sity, as measured by BMI; central obesity, as assessed by waist circum-
ference (WC); and glucose metabolism, as assessed by fasting glucose 
level and HOMA-IR. Associations that exceeded the Bonferroni-correct-
ed P value threshold are presented in Table 2. The full set of  associations 
across cardiometabolic phenotypes, which included systolic and diastolic 

blood pressure, HDL, and triglycerides, is further presented in Supplemental Tables 2–9.
Several known associations with obesity and insulin metabolism were validated, including uric acid 

(14); 2-aminoadipic acid (15); glutamate (16); the branched-chain amino acids leucine, isoleucine, and valine 
(17, 18); the short-chain acyl carnitines C3- and C6-carnitine (18); the tryptophan catabolite kynurenic acid 
(16); and amino acids tyrosine, alanine, and glycine (17). We also identified associations with metabolites 
that map to pathways previously associated with cardiometabolic disease, including the branched-chain 
ketoacid 2-ketoisovaleric acid and the tryptophan catabolites quinolinic acid, xanthurenic acid, indole-
3-propionic acid, and kynurenine. Intermediate products of  purine degradation and uric acid production 
included inosine, hypoxanthine, and xanthine. Several analytes that spanned glucose metabolism and the 
tricarboxylic acid cycle were elevated, including glucose, lactic acid, pyruvic acid, α-ketoglutaric acid, aco-
nitic acid, and malic acid. Taken together, the identification of  known metabolite-phenotype associations 
and pathways confirmed the validity of  our approach.

AEA and associations with obesity and cardiometabolic traits. In the FHS Gen 3, analytes associated with 
cardiometabolic disease traits included uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), reduced 
glutathione, hippuric acid, and AEA (see Table 2). Of  these four candidates, AEA was notable for its asso-
ciation across metabolic traits, including generalized and central obesity and glucose metabolism, with the 
greatest association with markers of  obesity. Linear regression with BMI yielded an adjusted β coefficient 
of  0.22 (P = 3.6 × 10–13); for WC, the age- and sex-adjusted β coefficient was 0.20 (P = 1.6 × 10–12). In age- 
and sex-adjusted logistic regression analyses, for each unit increase in AEA, the odds ratio (OR) for obesity 
(defined as BMI ≥ 30) was 3.20 (95% CI 2.10–4.88, P = 6.3 × 10–8) and for excessive WC (defined as ≥88 
cm), the OR was 2.79 (95% CI 1.85–4.20, P = 9.2 × 10–7). AEA was also associated with elevated fasting 
serum glucose (glucose >110 mg/dl; OR 3.12, 95% CI 1.80–5.40, P = 4.9 × 10–5) and abnormal HOMA-IR 
(HOMA-IR ≥2.0, OR 2.16, 95% CI 1.51–3.09, P = 2.5 × 10–5) after adjustment for age and sex.

We sought to extend our work on AEA by assessing for associations with NAFLD, an obesity-relat-
ed phenotype. Prior animal studies have suggested that the putative AEA receptor CB1 may modulate 
the accumulation of  hepatic fat (19, 20), and a recent case-control cohort study identified an association 
between the endocannabinoid system and NAFLD (21). We therefore assessed for an association between 
AEA and radiographic hepatic steatosis in the FHS Gen 3 cohort and found an age- and sex-adjusted β 
coefficient of  –0.013 (P = 0.03).

AEA levels correlate with the severity of  NASH. The observed associations in the FHS Gen 3 cohort were present 
in a cohort of individuals free of overt disease, and the effect size with hepatic steatosis was accordingly subtle. 
To verify the specificity and extend our observations, we next analyzed a hospital-based, case-control cohort that 
had more advanced and precisely phenotyped liver pathology. These patients consisted of obese individuals with 
biopsy-proven NASH (cases) compared with those with obesity and normal liver histology (controls). The clini-
cal characteristics of the age-, sex-, and BMI-matched cohort are listed in Table 3, and the histologic characteris-

Table 1. Characteristics of Framingham Heart Study 
Generation 3 participants at exam 1

Variable n = 997
Age, yr (mean ± SD) 40 ± 9
Female, n (%) 526 (53%)
BMI, kg/m2 (mean ± SD) 26.6 ± 5.3
Waist, inches (mean ± SD) 36.3 ± 5.7
SBP, mmHg(mean ± SD) 117 ± 14
DBP, mmHg (mean ± SD) 75 ± 9
HOMA-IR (mean ± SD) 1.04 ± 0.83
Glucose, mg/dl (mean ± SD) 96 ± 19
HDL, mg/dl (mean ± SD) 60 ± 18
Triglycerides, mg/dl (mean ± SD) 109 ± 66
Creatinine, mg/dl (mean ± SD) 0.80 ± 0.15

SBP, systolic blood pressure; DBP, diastolic blood pressure;  
HOMA-IR, homeostatic model assessment of insulin resistance.
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tics of the liver biopsies are summarized in Supplemental Table 10. In univariate analysis, AEA was significantly 
higher in the NASH group compared with the control group (Table 3, P < 0.002). Multiple logistic regression 
demonstrated that AEA remained an independent predictor of NASH (OR 5.2, 95% CI 1.6-17.0, P = 0.007), 
after adjusting for known risk factors, including HDL, triglyceride level, HOMA-IR, and alanine aminotrans-
ferase (ALT) (Table 4). AEA was also associated with increased severity of NASH, as assessed by the NAFLD 
activity score (OR 4.8, 95% CI 1.6–13.8, P = 0.005) and the presence of fibrosis (22) (OR 2.6, 95% CI 1.01–6.5, P 
= 0.04; see Supplemental Table 10). These findings suggest that AEA is not only associated with biopsy-proven 
NASH, but also associated with advanced liver histopathology, and that it may serve as a biomarker for NASH.

Table 2. Metabolite-phenotype associations in the Framingham Heart Study

BMI WC Glucose HOMA-IR
Est. β 

coefficient
P value Est. β 

coefficient
P value Est. β 

coefficient
P value Est. β 

coefficient
P value

Uric acid 0.30 1.7E-18 0.29 1.9E-20 0.25 6.7E-14 0.25 6.6E-15
Glutamate 0.28 3.9E-18 0.28 1.1E-20 0.24 6.0E-16
Pyruvic acid 0.26 3.6E-17 0.25 1.1E-18 0.12 9.1E-05 0.21 7.8E-13
Quinolinic acid 0.23 1.1E-13 0.22 5.8E-15 0.19 2.3E-10
Anandamide 0.22 3.6E-13 0.20 1.6E-12 0.15 1.1E-06 0.15 2.1E-07
UDP-GlcNAc 0.27 2.4E-11 0.26 7.9E-11 0.25 4.0E-09
KIV 0.21 5.6E-11 0.18 5.1E-09 0.15 2.8E-06 0.15 1.1E-06
Glycine –0.20 2.6E-10 –0.19 4.2E-11 –0.13 4.2E-05 –0.15 4.7E-07
Tyrosine 0.19 1.1E-09 0.17 1.1E-08 0.17 1.5E-08
Isoleucine 0.20 1.2E-09 0.18 1.0E-08 0.14 4.5E-05 0.16 3.7E-07
Valine 0.19 9.8E-09 0.16 7.1E-08 0.15 6.1E-07
Bilirubin –0.17 2.7E-08 –0.18 1.1E-09
2-Aminoadipic acid 0.25 7.0E-08 0.23 6.4E-07
Hypoxanthine 0.17 8.9E-08 0.16 1.7E-08 0.14 1.4E-06
Kynurenine 0.18 9.0E-08 0.17 2.0E-08 0.17 5.5E-08
Oxalate –0.16 1.3E-07 –0.14 2.7E-07
Kynurenic acid 0.17 1.5E-07 0.16 1.8E-07 0.12 1.6E-04
Glucose 0.17 1.6E-07 0.16 1.4E-07 0.39 4.5E–34 0.19 5.3E-08
Aconitate 0.17 1.9E-07 0.17 1.3E-08 0.14 1.2E-05 0.18 4.8E-09
α-Ketoglutarate 0.16 2.3E-07 0.17 1.2E-08 0.20 7.8E-11
Xanthurenic acid 0.16 4.1E-07 0.15 1.1E-06 0.13 3.4E-05
Indole-3-propionic acid –0.24 4.3E-07 –0.20 1.5E-06
Leucine 0.16 1.6E-06 0.13 1.8E-05 0.13 2.1E-04 0.14 7.4E-06
C3-carnitine 0.15 3.0E-06 0.16 1.8E-08 0.13 3.3E-06
Alanine 0.14 6.8E-06 0.13 6.9E-06 0.12 4.7E-05
Glutathione reduced –0.15 9.8E-06 –0.18 1.2E-08
Proline 0.15 1.3E-05 0.13 3.7E-05
Xanthine 0.14 2.0E-05 0.14 1.2E-05
2-Hydroxybutyrate 0.13 3.5E-05
Hippuric acid –0.12 8.8E-05 –0.13 1.6E-05 –0.16 5.5E-07 –0.13 3.2E-05
Lactate 0.12 1.0E-04 0.11 5.8E-05
Choline 0.12 1.4E-04 0.11 1.9E-04
Inosine 0.11 2.2E-04 0.11 1.2E-04
C4-butyryl-carnitine 0.11 1.3E-04
C6-carnitine 0.15 1.0E-04
KIC/KMV 0.12 2.1E-04
Gluconate 0.20 4.3E-05
Glycochenodeoxycholate 0.11 1.1E-04
Creatine 0.12 8.4E-05

WC, waist circumference; HOMA-IR, homeostatic model assessment of insulin resistance; Est., estimated; UDP-GlcNAc, uridine diphosphate 
N-acetylglucosamine; KIV, 2-ketoisovaleric acid; KIC, ketoisocaproic acid; KMV, ketomethylvaleric acid. Statistical values were obtained using age- and sex-
adjusted regression.
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Exogenous AEA alters glucose and lipid metabolism in zebrafish. To take the first preliminary steps toward 
ascertaining whether AEA may play a functional role in a model organism, we administered exogenous 
AEA to the zebrafish Danio rerio. We examined glucose and lipid metabolism, both of  which were altered 
in our analyses of  the FHS Gen 3 cohort. We conducted dose-response experiments in larval zebrafish that 
were exposed to increasing concentrations of  AEA, which was added to the water to provide a constant 
reservoir of  exogenous compound. Of  note, several prior reports and our own preliminary studies showed 
that acute exogenous AEA administration in mice results in rapid metabolism, most likely by the fatty 
acid amide hydrolase, most likely by the fatty acid amide hydrolase, preventing the accumulation of  AEA 
in blood and tissues (data not shown) (23, 24). When evaluating glucose homeostasis or lipid deposition, 
we found that administration of  exogenous AEA was associated with increased glucose and lipid deposi-
tion (see Supplemental Methods). Furthermore, coadministration with the cannabinoid receptor inhibitor 
rimonabant ameliorated the AEA-induced elevation in glucose or lipid, underscoring the specificity of  the 
observations (see Supplemental Methods).

Discussion
In this study, we developed a streamlined metabolomics method to investigate metabolites associated with 
cardiometabolic disease and NAFLD. Our analysis of  a large, well-established, community-based cohort 
identified AEA as a candidate biomarker linking obesity and hepatic steatosis. Given the overall healthy 
status of  the participants, the findings were subtle and represent associations many years before disease 
phenotypes develop. For this reason, we also studied AEA in a hospital-based, patient cohort with a his-
tologically defined NAFLD together with carefully selected controls matched for age and BMI. Taken 
together, our study highlights the endocannabinoid system as a putative link among obesity, the metabolic 
syndrome, and liver pathology.

Our findings in relation to AEA are also in accord with prior studies of  its cognate receptor. A role 
for the cannabinoid receptor CB1 in obesity and energy homeostasis has been established in relation to 
food intake and energy balance (25, 26). Activation of  the CB1 receptor centrally and peripherally leads 
to altered energy balance and weight gain in model organisms (19, 27–29). Selective blockade of  CB1 
with rimonabant in human clinical trials demonstrated an effect on weight loss (30, 31), but further evalu-
ation of  cardiovascular outcomes was limited by psychiatric side effects, including an apparent increase 
in suicide risk (32). On the other hand, there is less data available on the direct role of  AEA in metabolic 
disease. In accordance with our zebrafish data, rodents that are administered a high-fat diet demonstrate 
elevated AEA associated with weight gain and hyperglycemia (33, 34). However, the association of  AEA 
with human obesity and glucose metabolism has been less certain (35–37) and has never been evaluated in 
a large human cohort free of  overt disease — an important strength of  the present study. The confirmation 
of  our finding in two independent cohorts underscores the relevance of  this pathway in human disease.

Table 3. Characteristics of the NASH cohort

Normal (n = 36) NASH (n = 36) P value
Age at biopsy (yr) 40.0 ± 9.7 43.1 ± 11.8 0.23
BMI, kg/m2 (mean ± SD) 46.5 ± 7.0 47.9 ± 7.4 0.44
AST, U/l (median [range]) 16.5 (0–61.0) 24.5 (13–179) <0.0001
ALT, U/l (median [range]) 27.0 (14.0–147.0) 48 (19–288) <0.0001
Serum LDL, mg/dl (median [range]) 89.7 (29.4–178.6) 91.6 (48.2–179.4) 0.92
Serum total cholesterol, mg/dl (median [range]) 163 (80–260) 160 (101–276) 0.99
Serum triglycerides, mg/dl (median [range]) 91 (44–266) 125 (39–418) 0.03
Serum HDL, mg/dl (median [range]) 45 (25–105) 38.5 (25–73) 0.007
Fasting insulin, μU/ml (median [range]) 20 (4–118) 32.5 (11–99) 0.002
Fasting glucose, mg/dl (median [range]) 91 (65–224) 119.5 (74–263) 0.01
HOMA-IR (median [range]) 4.8 (0.9–65.3) 8.6 (2.4–4 0.1) 0.001
Anandamide, pg/ml (mean ± SD) 104 ± 42 149 ± 72 0.002

NASH, nonalcoholic steatohepatitis; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HOMA-IR, homeostatic model assessment of 
insulin resistance. Statistical values were obtained using Student’s t or Mann-Whitney U test, depending on data normality.
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Our analysis also identified AEA as a candidate biomarker for NASH. Obesity and diabetes are risk 
factors that contribute to the increasing prevalence of  hepatic steatosis and NAFLD in the US (2, 38). 
NASH can progress to cirrhosis or end-stage liver disease and is predicted to be the leading indication for 
liver transplantation by 2020 (39, 40). As only a subset of  those with NAFLD progress to NASH and fibro-
sis, the ability to risk stratify patients and target only high-risk patients for liver biopsy is essential to limiting 
biopsy-related morbidity and mortality, while allowing for the accurate identification of  high-risk patients 
(22). The finding that AEA level is associated with NASH severity, independent of  traditional NASH risk 
factors, such as liver enzyme, HOMA-IR, HDL cholesterol, and lipid levels, suggests that this metabolite 
may serve as a biomarker of  the presence and severity of  NASH and may aid in elucidating the pathways 
that drive NASH progression. Although previous studies have implicated the endocannabinoid system in 
hepatic steatosis, either via altered regulation of  the cannabinoid receptors (26) or in association with the 
related endocannabinoid 2-arachidonoylglycerol (21), our study is the first to our knowledge to implicate 
AEA specifically. The reasons for the closely related but not identical findings may be due to differences 
in the type of  controls, matching of  cases and controls, and differences in outcome measures. Future stud-
ies in a prospective cohort may help to clarify which endocannabinoid metabolites are associated with 
NAFLD and at which stage of  severity this association begins.

Strengths of  this analysis included a metabolite-profiling method with simplified preanalytical sam-
ple preparation, rapid separation, and optimized detection for human plasma metabolites. Maximizing 
the strengths of  targeted methods, we developed a rapid approach that can routinely detect and quantify 
179 analytes across key biologic pathways in human plasma. Our platform facilitates analysis in large 
cohorts, helping to overcome the risk for false-positive associations that can occur in multiple hypothesis 
testing (41). Whereas other studies have reported methods compatible with positive and negative polarity 
mass spectrometry (12, 42) or have developed multiplexing separation (43), our study represents both an 
improvement in the cycle time (~12.5 minutes) and a simplified preparation that facilitates metabolite 
quantification and replication in large patient cohorts.

Our study has limitations. Our biomarker analyses in the human cohorts identify associations and 
do not imply a causal relationship between AEA and NAFLD. Additional prospective cohort studies are 
needed to confirm our findings, adjust for potential confounders, and validate concentration thresholds for 
differentiating NASH from hepatic steatosis. Although our preliminary studies of  exogenous administra-
tion of  AEA in a vertebrate model demonstrated that excess AEA can lead to accumulation of  lipid in the 
liver, additional work is needed to elucidate mechanisms and definitively demonstrate a causal relation-
ship at more physiologically relevant levels. We also identified other candidate metabolites associated with 
cardiometabolic risk traits, including UDP-GlcNAc, hippuric acid, and reduced glutathione. It is possible 
that these biomarkers, which require further validation and study, may also predict liver disease, and future 
work is needed to determine the relative contributions of  these other metabolites.

Taken together, our study supports the notion that metabolites such as AEA are fundamental biomark-
ers for metabolic disease, including obesity, insulin resistance, and NAFLD.

Methods
Subjects. The FHS Gen 3 cohort enrolled 4,095 individuals from 2002 to 2005 in a community-based lon-
gitudinal cohort study. Of 1,006 randomly selected participants, 1,000 were free of  prevalent myocardial 
infarction or congestive heart failure at the first examination cycle and were selected for metabolite profiling. 

Table 4. Multivariable predictors for biopsy-proven NASH

Odds ratio 95% Wald confidence limits P value
Anandamide 5.20 1.48 20.05 0.007
ALT 1.05 1.01 1.08 0.01
HOMA-IR 1.01 0.95 1.07 0.88
HDL 0.92 0.85 0.99 0.03a
Triglycerides 1.01 0.997 1.02 0.16

NASH, nonalcoholic steatohepatitis; ALT, alanine aminotransferase; HOMA-IR, homeostatic model assessment of insulin resistance. Statistical values 
were obtained using multivariable logistic regression.
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Cardiometabolic traits, routine biochemical testing, and metabolite data were available for analysis in 997 of  
these subjects. 470 participants from FHS Gen 3 participants who had metabolite profiling also underwent an 
abdominal CT scan with evaluation for the presence of  liver fat, as assessed by the liver-to-phantom ratio (44).

The Massachusetts General Hospital NAFLD cohort is a hospital-based cohort of  individuals who 
have undergone clinically indicated liver biopsies and have available liver histology (2011–2016). The 
initial cohort contains a spectrum of  NAFLD phenotypes, including normal liver histology, steatosis, 
NASH, and NASH with fibrosis. Individuals with other causes of  chronic liver disease or with excess 
alcohol consumption, defined as >21 drinks per week for men and >14 drinks per week for women were 
excluded from this cohort (45). For the case-control study, patients with diabetes were excluded to remove 
the confounding effect of  diabetes. Subjects with biopsy-proven NASH were matched by age, gender, and 
BMI to controls that exhibited normal liver histology. Liver biopsies were evaluated by a single blinded 
hepatopathologist and graded according to the NASH clinical research criteria for NAFLD activity score 
and fibrosis stage (22). NASH was defined by the presence at least of  grade 1 steatosis, lobular inflamma-
tion, and hepatocyte ballooning. Normal liver histology had no evidence of  steatosis, portal or lobular 
inflammation, hepatocyte ballooning, or fibrosis. Plasma samples used for analysis were drawn after a 
12-hour fast within 3 months prior to liver biopsy.

Plasma samples. EDTA blood samples were collected and immediately centrifuged to separate cellular 
material from plasma. Aliquots of  plasma were frozen on dry ice and stored at –80°C until analysis. 30-μl 
samples were deproteinized with 70 μl acetonitrile/methanol (75:25; v/v) containing deuterated internal 
standards (25 μM thymine-d4 [Sigma-Aldrich], 10 μM inosine-15N4 [Cambridge Isotope Laboratories], 10 
μM citrulline-d7 [Sigma-Aldrich], 25 μM phenylalanine-d8 [Cambridge Isotope Laboratories], and 10 μM 
valine-d8 [Sigma-Aldrich]). For some experiments in zebrafish lysates, AEA-d4 [Cayman Chemical] was 
spiked into the matrix to generate the standard curve used to quantify AEA levels. After vortexing, the 
samples were centrifuged at 20,000 g at 4°C for 15 minutes, and supernatants were transferred to HPLC 
quality glass vials with inserts (MicroSolv). Additional sample preparation solvents that were evaluated 
(see Supplemental Methods) included acetonitrile/methanol/formic acid (75:25:0.1; v/v/v), acetonitrile/
water/ammonium hydroxide (85:14:0.7), and methanol/water (80:20).

Chromatography. Deproteinized plasma extracts were subjected to normal phase hydrophilic interaction 
chromatography using a 2.1 × 100 mm 3.5-μm Xbridge amide column (Waters). Mobile phase A was 95:5 
(v/v) water/acetonitrile, with 20 mM ammonium acetate and 20 mM ammonium hydroxide (pH 9.5). 
Mobile phase B was acetonitrile. Ammonium acetate, ammonium hydroxide, and Optima grade solvents 
were purchased from Fisher Scientific. For amide-negative mode, the chromatography system consisted of  
a 1260 Infinity autosampler (Agilent) connected to a 1290 Infinity HLPC binary pump system (Agilent). 
The initial conditions were 0.25 ml/min of  85% mobile phase B, followed by a linear gradient to 35% 
mobile phase B over 6 minutes. This was followed by a linear gradient to 2% mobile phase B over 0.5 
minutes held for an additional 0.5 minutes and then a 0.5-minute gradient return to 85% mobile phase B. 
Column equilibration was continued for 4.5 minutes at 0.5 ml/min for a total cycle time of  approximately 
12.5 minutes. The column compartment was maintained at 30°C.

The chromatography for positive mode utilized an HTS PAL autosampler (Leap Technologies) 
connected to a 1260 HPLC binary system (Agilent). The same mobile phases and column were used 
as in the amide-negative mode, except that initial conditions were 0.25 ml/min of  90% mobile phase 
B. A linear gradient to 10% mobile phase B over 6 minutes was followed by a hold for 1 minute at 10% 
mobile phase B. The initial conditions were restored over 0.5 minutes, and the column was equilibrated 
for 4.5 minutes at 0.5 ml/min. Although these methods were developed in parallel on separate LC-MS/
MS instruments, the method can be run routinely on a single instrument, alternating a sample injection 
in the positive and then negative modes.

Mass spectrometry. Using purified reference standards, 157 metabolites were optimized for negative-mode 
detection on a 6490 QQQ (Agilent) triple-quadrupole mass spectrometer equipped with an electrospray ioniza-
tion source. Transitions for each compound were assessed for sensitivity, selectivity, and retention time in the 
pooled plasma matrix with and without the spiked reference standard. 78 of the metabolites were reproducibly 
detected in human plasma and were selected for dynamic multiple reaction monitoring (MRM), which had a 
minimum dwell time of 30 milliseconds for each metabolite. Final mass spectrometry settings for the 6490 QQQ 
were as follows: sheath gas temperature, 400°C; sheath gas flow, 12 l/min; drying gas temperature, 290°C; dry-
ing gas flow, 15 l/min; capillary, 4,000 V; nozzle pressure, 30 psi; nozzle voltage, 500 V; and delta EMV, 200 V.

https://doi.org/10.1172/jci.insight.92989


7insight.jci.org      https://doi.org/10.1172/jci.insight.92989

R E S E A R C H  A R T I C L E

A similar strategy was used to generate a positive ionization mode MRM method, except that a 
QTrap 4000 (Applied Biosystems/Sciex) mass spectrometer was used. Of  114 metabolites optimized for 
positive mode, 101 were detectable in human plasma and included in the final MRM method. The final 
mass spectrometry settings for the QTrap 4000 were as follows: source temperature, 450°C; ion spray 
voltage, 5,000 V; CAD gas, 10; CUR gas, 20.

Peak integration, normalization, and quality control. Metabolite quantification was determined by 
integrating peak areas using MassHunter QQQ Quant (Agilent) or Multiquant software (version 2.0; 
Applied Biosystem/Sciex). All metabolite peaks were manually reviewed for peak quality in a blinded 
manner. In addition, pooled plasma samples were interspersed within each analytical run at standard-
ized intervals every 10 injections, enabling the monitoring and correction for temporal drift in mass 
spectrometry performance (46). Each of  these samples was prepared, extracted, and processed from a 
larger pool of  normal human plasma. The nearest neighbor flanking pair of  pooled plasma was used to 
normalize experimental samples in a metabolite-by-metabolite manner. In addition, a separate pooled 
plasma sample was included every 20 injections to assess the performance of  the normalization pro-
cedure and determine the coefficient of  variation (CV) for each metabolite. The CV of  each analyte is 
included in Supplemental Table 1. Any sample with deuterated internal standard values ≥2 SD was 
excluded from peak integration and further analysis. Validation of  peak identity of  AEA is shown in 
the Supplemental Methods.

Statistics. All metabolite values were natural logarithmically transformed because of  their nonnor-
mal distribution and then standardized (to mean = 0, SD = 1) within the cohort. Age- and sex-adjusted 
regression analyses were performed in each study sample to examine the relation of  each metabo-
lite (predictor variable) to each clinical metabolic trait (response variables): BMI, fasting glucose, log 
HOMA-IR, systolic blood pressure, diastolic blood pressure, log triglycerides, and HDL cholesterol. 
Linear regression analyses were performed with adjustment for age, sex, and batch on the LC-MS run 
(see Supplemental Tables 2–9). Given that 179 metabolites were analyzed across both methods, we 
used a Bonferroni-corrected P value threshold of  2.79 × 10–4 to account for the number of  metabolites 
analyzed. Because the majority of  metabolites were correlated within well-defined biological groups 
(amino acids, nucleotides, Krebs cycle organic acids, etc.), this correction was conservative.

Clinical and laboratory continuous variables were compared between two independent groups using 
2 tailed Student’s t test or Mann-Whitney test, as appropriate. Categorical variables were compared using 
Fisher’s exact test. For the metabolite analysis in the animal samples, we used a P value threshold of  0.05, 
using Mann-Whitney or Student’s t test, depending on data normality. Statistical analyses were performed 
using SAS (SAS Institute) (see Supplemental Figures).

Study approval. All human study protocols were approved by the institutional review board (Massachu-
setts General Hospital), and all study participants provided written informed consent.
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Supplemental Methods and Results 

Analyte selection 

In order to develop a multifunctional, high throughput method for human plasma that 

included sentinel analytes across important metabolic pathways, we first identified 273 

metabolites available in purity across major domains of metabolism in the KEGG database. 

Analytes included central carbohydrates, organic acids, bile acids, sterols, glycans, nucleotides, 

vitamins, and amino acids. Next, we constrained the design based on the following principles: 1) 

compatibility with a one-step pre-analytical sample preparation, 2) a rapid LC gradient with 

sufficient separation of metabolites to allow for multiple reaction monitoring, 3) stable retention 

times and column life over repeated injections, and 4) optimization of mass spectrometer settings 

to enhance detection of lower abundance negatively charged metabolites. The conceptual 

workflow of the LC-MS/MS method is depicted in Supplemental Figure 1. Each metabolite was 

individually tuned on the platform. The example of 2-aminoadipic acid (2-AAA) demonstrates 

the identity and separation from isobaric contaminants (Supplemental Fig. 1B). Detection of the 

endogenous metabolite in plasma was compared to exogenous compound in a pure preparation 

and exogenous compound spiked into plasma to confirm identity. The expected peak was further 

identified by examining fragmentation patterns and comparing to pure exogenous compound. 

      

 



 

Supplemental Figure 1. Conceptual workflow for metabolite profiling. A) Following 
precipitation of protein, the complex matrix is first separated using Amide chromatography 
followed by tandem mass spectrometry to identify each metabolite. B) The process for 
compound identification first involves tuning the instrument to purified compound (left panels). 
Human pooled plasma is then monitored using the optimized settings (middle panel). Isobaric 
contaminants demonstrate different retention times and peak identity is further confirmed by 
comparing fragmentation patterns with the pure compound. Finally, spiked compound is added 
to the pooled plasma to confirm proper retention time. C) Overview of the number of initial 
compounds tuned on the platform, the number that were detectable in human plasma (middle 
panel) and the number based on ionization polarity. 
 

 

 

  



Platform settings influence sensitivity in a compound-specific manner 

We assessed for analytical parameters that affect sensitivity and reproducibility. We 

focused on sensitivity first, to maximize the number of monitored analytes detected in a high 

throughput method. The sensitivity to various metabolite classes was dependent upon source 

ionization and sample preparation conditions, which influenced detection in a compound-specific 

manner (see Supplemental Figure 2). For example, altering the desolvation rate by increasing 

source gas temperatures improved the sensitivity for many compound classes but particularly for 

nucleotides, high energy phosphates and bile acids (Supplemental Figure 2A). Other source 

settings related to the electrospray pressure and nozzle voltage demonstrated a trade-off in 

sensitivity for different metabolite classes (Supplemental Figure 2B). Similarly, the sample 

preparation solvents influenced both the sensitivity and the ability to detect selected compounds, 

with acetonitrile:methanol preserving the maximum detection of metabolites with the highest 

sensitivity (Supplemental Figure 2C). Of 273 compounds evaluated, the final method yielded 

179 metabolites that were reproducibly detected in human plasma.  



              

 
Supplemental Figure 2. Sensitivity for detection varies in a compound-specific manner. A) 
Ionization source settings that impact the desolvation rate, including the sheath and drying gas 
temperatures affect sensitivity that varies by compound class. The arrow marks the final setting 
used for subsequent analysis. B) Source voltage and nebulizer pressures demonstrate a trade-off 
in the detection of compound classes, with the optimal setting highlighted by the red arrows. C) 
Sample preparation solvents altered the sensitivity for detection of compounds, and to a lesser 
extent, the coefficient of variation (CV). 

 

  



Analysis of retention time, normalization procedures and reproducibility 

We conducted a test run composed of 700 sample injections to evaluate retention time 

(RT) and reproducibility of the normalization procedure. Evaluating the RTs for all analytes 

demonstrated that temporal drift remained within a ~5 second window throughout the run 

(Supplemental Figure 3A). In order to evaluate analytical reproducibility, we first corrected for 

the effect of ionization suppression, a consequence of electrospray ionization related to the 

accumulation of salts and sample biomass in the ionization source that can lead to sensitivity 

drift over time (Supplemental Figure 3B).1 Interspersed pooled plasma reference samples 

allowed for correction of the anticipated sensitivity drift (Supplemental Figure 3C), resulting in 

coefficient of variation (CV) of 4.3% to 11.9% for the deuterated internal standards 

(Supplemental Figure 3D). Measurement variation was also specific to each analyte2 in the 

pooled plasma reference samples, with CV ranging from 1.0% to 22.1% (see Supplemental Table 

1). 

  



 

Supplemental Figure 3. Assessment of reproducibility and validation of the pooled plasma 
normalization procedure. A) The retention time (RT) drift over a 700 sample injection run is 
plotted for all metabolites on a sample by sample basis. With a multiple reaction monitoring 
window of 30-60 seconds per metabolite allows for the observed drift in retention time over long 
runs. B) Ionization suppression is evident in negative mode Amide LC-MS/MS, which is related 
to the accumulation of salts and biomass that occurs with repeated injections. C) Normalization 
on a metabolite-by-metabolite basis corrects sensitivity drift. Data for interspersed human pooled 
plasma samples are shown. D) Deuterated internal standards are included in every sample to 
visualize and confirm expected sensitivity and normalization. Inosine-15N4 is shown as an 
example, which had a CV of 5.6% across all injections. 



The biological range of values for each metabolite within the experimental samples 

varied to a greater extent than analytical variation, although some metabolites demonstrated less 

variation suggestive of tighter regulation (e.g., citrulline, Supplemental Figure 4A). Other 

analytes demonstrated wider variation in concentration in the experimental samples (e.g., the 

ketone body 3-hydroxybutyrate, Supplemental Figure 4B), suggestive of a greater tolerance in 

concentration range within the bloodstream. For each metabolite, the relationship between the 

analytical and biological variation (Supplemental Figure 4C) was determined by the interaction 

between platform analytical performance and the biological concentration range in the plasma. 

For some compound classes such as the ketone bodies and bile acids, there was approximately a 

five-fold greater biological to analytical variation whereas the TCA cycle organic acids 

demonstrated less dynamic range (Supplemental Figure 4C, red versus green dots, respectively).  

To assess suitability for population based studies, we developed clinical sample size 

estimates which varied depending on the analytical variation for each metabolite and the 

biological variation of the analyte within the experimental samples (i.e., the difference between 

the means). Generalizing this concept, we modeled this relationship based on sample size for 

group size N, the difference between the means (as a percentage) and the CV at 80% power, 

using a Bonferroni-corrected type I error rate for 179 tests, α=2.79×10-4.3 Sample size 

calculations were modeled for different coefficient of variation thresholds based on the equation:  

where n is the number of observations per group, z is the z score for the standard normal 

distribution, f is the ratio of the means between each group, Type I error is set at α=2.79×10-4 and 

the power is set at 1-β=0.80.3 



Given the observed analytical variability up to 22.1%, a cohort of 1,000 subjects would 

have 80% power to detect a difference of 8% or less for all metabolites included in the platform 

(Supplemental Figure 4D), which corresponds to a magnitude commonly seen in metabolite 

profiling studies.4-7	

 

 

Supplemental Figure 4. Both analytical and biological factors are analyte specific and 
determine the power in a given sample size.  A) On a metabolite-by-metabolite basis, the 
reproducibility of detection was monitored throughout the analytical run by interspersing human 
pooled plasma replicates (red dots). The experimental samples (black dots) are representative of 
the biological variability of the metabolite. Citrulline demonstrated less biological variability 
relative to B) the ketone body, 3-hydroxybutyrate. C) Summary of the analytical coefficient of 
variation (CV) in pooled plasma replicates relative to the biological variation of the experimental 
samples. As illustrative examples, ketone bodies and bile acids (red dots) demonstrated greater 
biological variation than tricarboxylic organic acids (green dots). D) Sample size estimates are 
modeled based on a given analytical CV (each line represents a different CV threshold), the 
percentage difference in values between cases and controls. For these models, 80% power and a 
Bonferroni-corrected type I error rate for 179 tests, α=2.79×10-4 was used.  



Peak validation of anandamide 

Each metabolite was individually tuned on the platform. Detection of the endogenous 

metabolite in plasma was compared to exogenous compound in a pure preparation and 

exogenous compound spiked into plasma to confirm identity. Supplemental Figure 5 shows the 

chromatograms from anandamide (AEA), which demonstrate the unambiguous identity of pure 

exogenous anandamide injected onto the LC-MS system (Supplemental Fig. 5A), which also 

corresponds to the same peak when exogenous AEA was spiked into human plasma 

(Supplemental Fig. 5B). The endogenous AEA in human plasma (Supplemental Fig. 5C) was 

detected and showed no isobaric contaminants. Both high and low endogenous AEA 

(Supplemental Fig. 5D) from experimental samples are shown. 

 

Supplemental Figure 5. Validation and peak identity of anandamide in the Amide LC-MS 
method. A) Exogenous anandamide (AEA) was injected into the LC-MS using the Amide 
method. The AEA peak, with MRM transitions of Q1: 348, Q3: 62.3, is shown in panel A. B) 
Anandamide was also spiked into normal volunteer human plasma, and the same peak was 



identified. C) The endogenous level of anandamide was detected at the same retention time, and 
no contaminating peaks were detected elsewhere in the run with same MRM settings. D) Two 
examples of experimental samples from the Framingham Heart Study Generation 3 cohort, with 
high endogenous anandamide (larger panel) and low endogenous anandamide (inset). Note that 
the low AEA chromatogram is scaled to match the high AEA peak intensity so that the peak and 
area of each peak can be directly compared. 
 
 

Anandamide concentration in plasma 

To estimate the absolute concentration of anandamide in plasma, exogenous deuterated 

anandamide-d4 was spiked into human pooled plasma across a broad concentration range. 

Supplemental Figure 6 shows the wide linear range (right hand panel) as well as the range that 

corresponds to the concentration of endogenous anandamide (left hand panel). The calculated 

concentration in human pooled plasma was 106 ± 5.7 pg/ml. 

 

 

Supplemental Figure 6. Standard curve demonstrating the range of detection of 
anandamide-d4 in human plasma. A) Isotopically labeled anandamide-d4, was spiked into 
human plasma at the indicated concentrations and analyzed using the LC-MS amide protocol. 
The lefthand panel is an inset that corresponds to the organge dotted rectangle on the righthand 
panel. Based on the standard curve, endogenous anandamide in normal volunteer plasma was 
measured at 106 ± 5.7 pg/ml, which is consistent with published concentration ranges.  
 

 

 



D. rerio experiments 

 	Zebrafish (Ekkwill strain) were maintained and embryos were obtained according to 

standard fish husbandry protocols in accordance with the Massachusetts General Hospital 

Institutional Animal Care and Use Committee. All compounds were purchased from Sigma-

Aldrich. Compounds were incubated for the indicated times, and the concentration indicates the 

level in the water. The corresponding level within the fish varies based on absorption through the 

skin, metabolism and excretion. However, the level of anandamide obtained within the zebrafish, 

as measured by mass spectrometry, exceeded the endogenous level in order to demonstrate an 

effect of administration even if greater than physiological normal levels. Post treatment, viability 

of the zebrafish larvae was assessed by observing heart rate and sedation was assessed by the 

touch response reflex. Glucose concentration was measured using Amplex Red Glucose Assay 

Kit (Invitrogen) and converted to uM concentration using a standard curve, according to the 

manufacturer’s instructions. Product formation was determined by reading fluorescence emission 

at 595nm.  Lipid deposition was assessed using Oil Red O staining. Zebrafish were fixed in 4% 

paraformaldehyde, stained with 0.3% Oil Red O in propylene glycol, washed with propylene 

glycol and imaged in 80% glycerol. Triglycerides were measured in whole zebrafish larvae by 

homogenizing 20 fish in 50 µl of water. The lysate was centrifuged at 6000 RPM for 10 minutes 

at 4°C and the supernatant was used to assess triglyceride levels using the Cayman Chemical kit 

according to the manufacturer’s instructions.  

Accumulation of AEA within the fish embryos was confirmed by comparison to 

anandamide-d4 internal standard two hours after addition of 30 µM AEA to the water (Figure 

7A). To determine the effect of acute administration of AEA on glucose homeostasis, zebrafish 

larvae 6 days post fertilization (dpf) were supplemented with AEA. One hour post 



administration, larvae displayed elevated glucose levels (10,067±345 RFU vs 7,653±312 RFU, 

p=0.0001; Figure 7B, left panel). At the highest concentration (30 µM AEA), there was a 32% 

elevation in glucose at 1 hour, a 43% elevation at 2 hours (p=6.46 x 10-5) and a 33% increase at 4 

hours (9,917±475 RFU vs 13,194±1,129 RFU, p=0.0003). Co-administration with the 

cannabinoid receptor inhibitor rimonabant ameliorated the AEA-induced elevation in glucose, 

underscoring the specificity of the observations (Figure 7B, right panel). 

 In zebrafish, adipocytes do not develop until 12 dpf. However, younger zebrafish larvae 

have a characteristic pattern of lipid deposition which can be visualized with the fat soluble dye, 

Oil Red O. Typically, unfed larvae display low levels of neutral triglycerides and lipids in the 

central nervous system and yolk sac. The baseline level of lipid deposition was represented by 6 

dpf control larvae (Figure 7C, top left panel). In contrast, larvae incubated with AEA displayed 

an increased amount of Oil Red O staining in several organ regions that was inhibited by co-

administration of rimonabant (Fig 7C), particularly the liver which demonstrated a dose-

dependent increase in staining (Figure 7D, boxes). Concordant with that observation, AEA 

induced a 39% increase in triglyceride levels in zebrafish larvae (13.3±0.01 mg/dl vs. 18.5±0.01 

mg/dl, p=0.001; Figure 7E). The effect of AEA administration was not exclusive to the liver. 

Additional organ areas were also detected with Oil Red O, including the brain and vascular 

system (Figure 7F). Within the brain, Oil Red O staining was prominent in the diencephalon 

(Figure 7F, arrowheads) and the optic tectum. Within the vascular system of fish treated with 

AEA, the dorsal aorta, axial vein and intrasegmental blood vessels (Figure 7F, arrows) were 

enriched with lipid deposits compared to the absence of vascular lipid deposits in vehicle-treated 

control larvae. 

 

 



 

 
Supplemental Figure 7. Exogenous anandamide administration in zebrafish alters glucose 
levels and lipid accumulation. A) The concentration of AEA achieved within the fish was 
measured by comparing to deuterated anandamide-d4, normalized to total fish protein. AEA, 
anandamide. B) Glucose levels were measured in 6 dpf larvae 4 hours post treatment with the 
increasing concentration of AEA in the water. Glucose was also measured in the presence of 
rimonabant, a cannabinoid receptor inhibitor. *, p<0.001; Glucose measurements provided in uM 
concentration; AEA, anandamide; Rim, rimonabant; data are mean±SEM. C) 6 dpf larvae 
stained with Oil Red O viewed laterally. D) Magnified views of the zebrafish, with the liver 
visualized by turning the fish to the left side. The location of the liver is shown by the blue box. 
E) Triglyceride concentration was measured in whole zebrafish larvae after treatment with 
increasing doses of AEA. *, p=0.001. F) Additional areas of AEA-dependent lipid staining 
included the brain (arrowheads) and the intersegmental vessels (arrows).  
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