

Background Information on Glycoconjugates

Richard D. Cummings, Ph.D. Director, National Center for Functional Glycomics Professor Department of Surgery Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02114 Tel: (617) 735-4643 e-mail: rcummin1@bidmc.harvard.edu

For General Reference On-Line See: *Essentials of Glycobiology* (2nd Edition) Varki, Cummings, Esko, Freeze, Stanley, Bertozzi, Hart and Etzler) <u>http://www.ncbi.nlm.nih.gov/books/NBK1908/</u>

HARVARD Media From Small Sugars Come Big Things

Glycoconjugates are Essential to Normal Health and Development

From Small Sugars Come Big Things

Glycobiology/Glycoscience are areas of research that explore the structures, functions, and biosynthetic regulation of glycoconjugates. Glycoconjugates, Which are Molecules Containing Sugars (Monosaccharides) Linked Within Them, are the Major Constituents of Animal Cell Membranes (*Glycocalyx*) and Secreted Material: See Different Classes of Glycoconjugates Below in Red Boxes

Glycans are as Ubiquitous as DNA/RNA and Appear to Represent Greater Molecular Diversity

5

General Roles of Glycans in Glycoprotein Functions

HARVARD Big Picture: Medical Center Connection of Glycoconjugate Biosynthesis to Intermediary Metabolism

- 1. The different types of monosaccharides found in animal cell glycoconjugates
- 2. The different types of glycoconjugates and their differences, e.g. glycoproteins, glycolipids
- 3. The nucleotide sugars, glycosyltransferases, glycosidases, transporters, endoplasmic reticulum, and Golgi in terms of their roles in glycoconjugate biosynthesis and turnover
- 4. The general steps in biosynthesis of glycoprotein N-glycans and O-glycans
- 5. The general steps in biosynthesis of glycosaminoglycans and glycolipids
- 6. The human blood group antigens and the basis for acceptable or unacceptable donors of blood and plasma
- 7. The Congenital Disorders of Glycosylation (CDGs)
- 8. I-cell disease and the consequences on lysosomal hydrolase targeting to lysosomes.
- 9. The bases of Lysosomal Storage Disorders (LSDs) and Mucopolysaccharidoses

HARVARD

But Brad Glycoconjugates and their carbohydrate residues represent one of the 4 classes of macromolecules in organisms.

DNA/RNA Protein Polysaccharides/ Lipids Glycoconjugates COOH CH_2 H₂ Carbohydrates attached Example of a 9 to a protein Glycoprotein

- Recently glycoconjugates have become structurally defined and biosynthetically understood, especially in terms of human diseases, and are accessible to new drug, diagnostic, and therapeutic developments.
- **Glycobiology** is the study of the biological functions, synthesis, and structures of glycoconjugates.
- Glycomics is the study of the repertoire of glycans found in cell-derived glycoproteins and glycolipids and in free fluids, e.g. milk, urine, etc.

Plasma membranes of all animal cells contain a very high density of

glycoconjugates, often termed the **glycocalyx**, which include all types of glycoproteins, that occur as receptors, transporters, adhesion molecules, and mucins

Brush border of the intestinal epithelium showing numerous microvilli and a prominent glycocalyx stained blue **TEM by Dr. Donald Fawcett**

Glycoconjugates, Which are Molecules Containing Sugars (Monosaccharides) Linked Within Them, are the Major Constituents of Animal Cell Membranes (*Glycocalyx*) and Secreted Material: See Different Classes of Glycoconjugates Below in Red Boxes

Return Labor Major 10 Monosaccharides Found in Human Glycans: Comprised of Hexoses

Hexosamines, Pentose, Uronic Acids, Deoxyhexoses, and Sialic Acids

HARVARD

Triose – 3 carbons Tetrose – 4 carbons Pentose – 5 carbons Hexose – 6 carbons Heptose – 7 carbons Octose – 8 carbons Nonose – 9 carbons Decose – 10 carbons

Note the **epimeric** relationships among the hexoses, carbon numbering, different properties of each class of monosaccharide

Epimers are molecules that differ only in the spatial arrangement around a single carbon atom

Note: Neu5Gc is not synthesized by humans and most birds, but is made by most other mammals and is found in cows, pigs, and sheep. Human consumption of glycoconjugates containing Neu5Gc can lead to its incorporation into human glycoconjugates.

National Center for Functional Glycomics Beth Stad Denses Medical Center and GTP, are Precursors for Nucleotide Sugars, which are Required for Medical Gener Glycoconjugate Biosynthesis

The Different Nucleotide Sugars in Human Based on Uridine Diphosphate, Guanine Diphosphate, and Cytosine Monophosphate

- Each reaction occurs in order one sugar at a time.
- The donor sugar must be in a activated, i.e. pyrophosphoryl, form, as a nucleotide sugar.
- Each unique glycan linkage formed uses a different enzyme.

- Each reaction occurs in order, with one sugar at a time being released from the non-reducing end of a glycoconjugate.
- Degradation of a heterogenous polysaccharide with multiple monosaccharides and linkages may require multiple enzymes and multiple reactions until it reaches the reducing end.
- The reaction requires water and is typically reversible.
- Each glycan linkage to be cleaved uses a different enzyme.

Some Biological Functions of Glycoconjugates

Sugars in Glycans are Linked to Each Other by a Glycosidic Bond: Differences between a Glycosidic Bond and a Peptide Bond

The glycosidic bond is the bond formed between simple sugars, which is very different from a peptide bond that is the bond formed between amino acids.

Oligosaccharide is a glycan containing more than 1 monosaccharide with a defined length, typically up to 30-40 residues;

Polysaccharide is usually reserved for glycans containing \geq 30 monosaccharides lacking defined length and having a repeating structure;

Glycan is a general term denoting all kinds of saccharides linked to each other or to an aglycone (non-carbohydrate)

HARVARD MEDIC Oproteins Typically Have Two Major Linkage Types of Sugars to Amino Acids Beth Israel Deaconess Medical Center

Example of a Glycoprotein: Erythropoietin is a Glycoprotein Hormone That Controls Erythropoiesis

- Some glycoproteins have a single O-glycan, whereas others, e.g. mucins, may have hundreds to thousands of O-glycans
- Some glycoproteins have 1 or more N-glycans and lack O-glycans, and vice versa; some glycoproteins have numerous N- and O-glycans
- The N-glycans are added co-translationally to proteins in the endoplasmic reticulum (ER) of cells using pre-assembled lipid-linked oligosaccharide donors [see upcoming discussion]
- The O-glycans in general are added post-translationally to proteins in the Golgi apparatus by single step additions of sugar from nucleotide sugar donors; no other precursors are involved
- O-glycans can be on adjacent Ser/Thr residues, whereas it is not possible for adjacent Asn residues to be N-glycosylated, although they can be near each other in sequence (the consensus sequence for N-glycosylation is –Asn-X-Ser/Thr-).

NOTE: In a non-enzymatic process free sugars, typically serum glucose, which may be elevated in disease conditions, can covalently modify lysine residues in a process termed "**glycation**" (which is a very different term from glycosylation) as seen in HbA_{1c} in diabetes. Glc + Lysine-Protein \longrightarrow Glc-Lys-Protein (glycated)

Two Common Types of N-glycans in Glycoproteins

Biosynthesis of Glycoproteins – in both the ER and Golgi: The 5 Major Steps in N-Glycosylation of Proteins in Animal Cells

In the dolichol cycle, Dol-P-P generated after protein glycosylation is converted back to Dol-P

Biosynthesis of Glycoproteins – in both the ER and Golgi:

The 5 Major Steps in N-Glycosylation of Proteins in Animal Cells

Note: Addition of O-glycans to glycoproteins occurs in Golgi by single step sugar additions from nucleotide sugars and no preformed intermediates HARVARD MEDICAL The Extended Termini of Some Glycans in Glycoproteins and Glycolipids Mainly Medical Blood Cells and Epithelial Cells, Contain the ABO(H) Blood Group Antigens Each Person may also Generate Antibodies to these Blood Group Antigens

Key Point! – ABO are different carbohydrate structures on red blood cells

- The ABO(H) blood group antigens are carbohydrate structures synthesized on glycoproteins and glycolipids in the Golgi apparatus of red blood cell precursors, megakaryocytes, and many types of epithelial cells, and occur on cell surfaces and in secretions.
- Biosynthesis occurs through a series of enzymatic reactions that add a single sugar from a nucleotide sugar donor to an acceptor as shown.
- The nucleotide sugars used are GDP-Fucose, UDP-Galactose, and UDP-N-acetylgalactosamine.
- The products of the reactions of Fut1 (H-enzyme) or Fut2 (secretor enzyme) become the acceptors for the Blood group A or B enzymes, to create the human A or B antigens, respectively.
- People with blood group A, have both the A enzyme and the Fut1 enzyme, whereas people with blood group B, have the B enzyme and the Fut1 enzyme.
- People with blood group O(H) lack the A and B enzyme and have Fut1 enzyme.
- The secretor H structure is inherited independently (Fut2) and some people are nonsecretors (meaning no blood antigens are in saliva, etc., and some are secretors, where they can make blood group antigens in secretions. 24

Blood Type	Erythrocyte Antigens	Serum Antibodies that can Agglutinate other Erythrocytes		
A B	A B	Anti-B	*	
A/B	A & B	none	Key Point!	
0	Н	Anti-A & Anti-B		

- People of Type O are Universal red cell donors, since individuals of Type A, Type B, and Type AB lack antibodies to Type O and thus are able to receive transfusions of Type O blood.
- By contrast, Type AB individuals are Universal plasma donor, since their plasma lacks antibodies to the ABO(H) antigens.
- Type AB individuals are also Universal recipients, since they lack antibodies to ABO(H) and they can receive blood cells from any donor.

ics

Parent Alleles	Α	В	0	
Α	AA (A)	AB (AB)	AO (A)	
В	AB (AB)	BB (B)	BO (B)	Key Point! *
0	AO (A)	BO (B)	00 (0)	

Note: Parentheses denotes the phenotypes of offspring.

- The Congenital Disorders of Glycosylation (CDG) is a group of autosomal recessive diseases that affect the synthesis of glycoproteins, typically affecting N-glycosylation 36 known genes so far (specific steps in Slides 16 and 17). Key Point!
- These disorders (frequency estimated to be 1/20,000) are characterized by neurological involvement that can be associated with multivisceral involvement.
- Symptoms range from severe developmental delay and hypotonia with multiple organ system involvement to hypoglycemia and protein-losing enteropathy with normal development, and thus is often un- or mis-diagnosed
- The biological diagnosis is commonly based on the demonstration of abnormal glycosylation of serum glycoproteins, such as serum transferrin, based on isoelectric focusing, the measurement of leukocyte enzyme activities responsible, and the search for mutations in the corresponding genes.
- CDGs are associated with different enzymatic deficits of which the most common is a phosphomannomutase (PMM2) deficit (corresponding to CDG Ia and representing 70% of the CDG syndromes) (specific steps in Slides 16 and 17). Kev Point!

- Type I CDG have defects in assembly of Glc₃Man₉GlcNAc₂-P-P-Dolichol or defects in efficiency of transfer of the oligosaccharide to protein, thus synthesizing glycoproteins <u>deficient in numbers of glycans</u>. Key Point!
- Type II CDG exhibit defects in trimming or processing of Man₈GlcNAc₂ after transfer to Protein and thus have altered N-glycan structures (loss of sialic acid, galactose, etc), but the <u>number of N-glycans on a protein are normal</u>

HARVARD her Disorders in Glycoprotein Biosynthesis - I-Cell Disease (Mucolipidosis Type II):

Patients with I-Cell Disease are characterized by deficiency in dozens of different lysosomal hydrolases in the lysosomes, and instead elevations of them in their serum.

The patients are characterized by skeletal abnormalities, restricted joint movement, coarse facial features, and severe psychomotor impairment; death usually occurs by age 8.

The loss of lysosomal enzyme is due to deficiency of a Golgi enzyme (the GlcNAc-1phosphate Phosphotransferase) to generate mannose-6-phosphate on the N-glycans of lysosomal hydrolases. Key Point!

Lack of their Man-6-P moiety leads to inability to bind the Mannose-6-phosphate Receptor, which is responsible for removing hydrolases from the secretory pathway and directing them to endosomes and subsequently lysosomes.

Profile view of 3-year-old with I-cell disease. Growth ceased more than one year earlier. Note small orbits, proptotic eyes, full and prominent mouth caused by gingival hypertrophy, short and broad hands, stiffening of small hand joints, prominent abdomen with umbilical hernia, and limited extension of the hips and knees.

HARVARD Lysosomal Hydrolases are Glycoproteins that Are Processed Differently from Non-Lysosomal Hydrolases: I-Cell Disease Caused by Absence of Mannose-6-Phosphate to the state of Mannose-6-Phosphate to the s

HARVARD

Medical Center Medical Center More Covalently Attached Glycosaminoglycans: PGs Make up All Connective Tissue

GAGs are linear polymers of disaccharide units of one acidic and one amino sugar

5 types of Glycosaminoglycans

HARVARD Proteoglycans (PGs) (old term is Mucoproteins) are Major Components of Beth Israel Deaconess Medical Connective Tissue Throughout the Body: In Disease or Damage Alterations in Mational Center for Functional Glycomics Proteoglycans and Extracellular Matrices Occur - Example shown is Myocardium

Health Myocardium

Myocardial Infarction

Rienks et al (2014) Circulation Research 114:872

- The mucopolysaccharidoses (lysosomal storage diseases or LSDs) are a group of *inherited metabolic diseases in which a defective or missing glycohydrolase enzyme causes accumulation of complex sugars* (GAGs in many cases) to accumulate in harmful amounts in the body's cells and tissues.
- This accumulation causes permanent, progressive cellular damage that affects appearance, physical abilities, organ and system functioning, and, in most cases, mental development.
- Depending on the type of mucopolysaccharidosis (MPS (x)), affected individuals may have normal intellect or may be profoundly retarded, may experience developmental delay, or have severe behavioral problems.
- Physical symptoms generally include coarse or rough facial features, thick lips, an enlarged mouth and tongue, short stature with a disproportionately short trunk (dwarfism), abnormal bone size or shape (and other skeletal irregularities), thickened skin, enlarged organs such as the liver or spleen, hernias, and excessive body hair growth.

HARVARD

Mucopolysaccharidoses Result from Defects in Specific Glycohydrolases (Glycosidases) Affecting the Stepwise Degradation of Glycosaminoglycans

35

- Glycoproteins contain N-glycans, O-glycans, or both (and although not discussed (see slide 5) some also are GPI-anchored glycoproteins);
- N-glycosylation of proteins occurs in the Endoplasmic Reticulum (ER) by addition of a glycan containing 14 sugars that is added *co-translationally* to proteins using a *dolichol-linked glycan precursor*;
- O-glycosylation occurs in the Golgi by the stepwise addition of sugars to Ser/Thr residues without a preformed precursor;
- Blood group antigens are antigenic carbohydrate on glycoproteins and glycolipids found mainly in erythrocytes, epithelial cells, and epithelial cell secretions;
- Glycosaminoglycans are long, linear polymers of repeating disaccharide units (typically containing uronic acid sugars) linked to protein (proteoglycans);
- Glycolipid biosynthesis occurs in the ER/Golgi using ceramide as the lipid moiety
- Defects in biosynthesis of glycoproteins causes Congenital Disorders of Glycosylation;
- Defect in synthesis of Mannose-6-phosphate in lysosomal hydrolases is the cause of *I-Cell Disease*;
- Defects in the degradation of GAGs or glycolipids are causes of *lysosomal storage diseases*.