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A Custom Genotyping Array Reveals Population-Level
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ABSTRACT
◥

Although prostate cancer is the leading cause of cancer mortality
for African men, the vast majority of known disease associations
have been detected in European study cohorts. Furthermore, most
genome-wide association studies have used genotyping arrays that
are hindered by SNP ascertainment bias. To overcome these dis-
parities in genomic medicine, the Men of African Descent and
Carcinoma of the Prostate (MADCaP) Network has developed a
genotyping array that is optimized for African populations. The
MADCaP Array contains more than 1.5 million markers and an
imputation backbone that successfully tags over 94% of common
genetic variants in African populations. This array also has a high
density of markers in genomic regions associated with cancer
susceptibility, including 8q24. We assessed the effectiveness of the
MADCaP Array by genotyping 399 prostate cancer cases and 403

controls from seven urban study sites in sub-Saharan Africa.
Samples from Ghana and Nigeria clustered together, whereas
samples from Senegal and South Africa yielded distinct ancestry
clusters. Using the MADCaP array, we identified cancer-associated
loci that have large allele frequency differences across African
populations. Polygenic risk scores for prostate cancer were higher
in Nigeria than in Senegal. In summary, individual and population-
level differences in prostate cancer risk were revealed using a novel
genotyping array.

Significance: This study presents an Africa-specific genotyping
array which enables investigators to identify novel disease associa-
tions and to fine-map genetic loci that are associated with prostate
and other cancers.

Introduction
Prostate cancer is a complex disease that disproportionally affects

men of African descent (1). Prostate cancer is the leading cause of
cancer-related mortality in African men (2). In the United States,
AfricanAmericanmenhave a higher risk of developing prostate cancer
and an even higher increased risk of dying from it compared with men
of European or Asian descent (3). In the United Kingdom, men of

African descent have an increased risk of being diagnosed and dying
from prostate cancer (4). Furthermore, the highest reported mortality
rates of prostate cancer are found in Caribbean men of African
descent (5). Multiple socioeconomic, environmental, and genetic
factors contribute to this health inequity.

Cancer is considered a genetic disease, and prostate cancer has a
heritability of 58% (6). Risks of prostate cancer run in families; the
relative risk of men with affected fathers is 2.1-fold higher compared
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with men without a family history (7). In recent years, multiple
genome-wide association studies (GWAS) have detected genetic asso-
ciations with prostate cancer (8–11). Collectively, these studies have
yielded over 200 independent prostate cancer risk–associated loci, and
one key genomic region that has been repeatedly implicated in prostate
cancer and other cancers is 8q24 (12–14). The most comprehensive
prostate cancer GWAS analyzed to date included over 140,000 cases
and controls of European ancestry (10). In this study, Schumacher and
colleagues generated a polygenic risk score (PRS) that successfully
classified individuals into high- and low-risk categories.

Unfortunately, most GWAS have not focused on populations from
sub-Saharan Africa. As of 2016, 81% of all GWAS samples were of
European ancestry, and 14% of all GWAS samples were of East Asian
ancestry (15). In addition, existing genotyping arrays do not adequate-
ly capture genetic variation in diverse African populations. Both of the
aforementioned issues limit what is known about cancer genetics in
African populations. Thus, the current set of known disease-associated
loci is enriched for alleles with an intermediate frequency in Europe or
Asia, but not Africa. This lack of representation can exacerbate existing
health disparities by not capturing relevant genetic risk associations in
African populations (16, 17). Disease associations do not always
replicate across populations, and the directions of risk associations
at cancer-associated loci may differ across study cohorts (18, 19).
Previous work also indicates that risks of prostate cancer vary by
genetic ancestry across the globe (20, 21). For example, a GWAS in
Ghana showed that themost promising SNP in thisAfrican population
has not been identified in other populations (22).Hence, there is a clear
need for more studies that analyze the genetics of African popula-
tions (23, 24). Commonly used genotyping arrays tend to use
markers that were originally ascertained in European popula-
tions (25). This can cause polygenic risks of complex diseases,
including prostate cancer, to be wrongly estimated (26). For exam-
ple, the OncoArray Consortium has developed an array with over
500,000 markers, half of which are in genomic regions that tag
cancer susceptibility (27). However, the OncoArray is not enriched
for African polymorphisms. By contrast, the H3Africa Consortium
has developed an array that includes over 2 million markers (28),
but the H3Africa Array was not specifically designed for cancer
studies. Existing arrays may therefore be suboptimal for detecting
cancer associations in African populations.

To address this problem, the Men of African Descent and Carci-
noma of the Prostate (MADCaP) Network (29) developed a custom-
ized genotyping array optimized for fine-mapping and detecting novel
associations with prostate cancer in African populations. The MAD-
CaP array will ultimately be used in an African GWAS containing over
6,000 cases and controls. Here, we analyze a pilot dataset of over 800
individuals from sub-Saharan Africa. In this article, we compare
multiple genotyping platforms and test the efficacy of the MADCaP
Array by genotyping samples from seven African study sites. Using
data derived from the MADCaP Array, we also infer population
structure, identify cancer-associated loci that have large allele frequen-
cy differences across Africa, and quantify polygenic risks of prostate
cancer in African populations.

Materials and Methods
Inclusion criteria for markers

The MADCaP Array was developed using the Applied Biosystems
Axiom genotyping solution from Affymetrix/Thermo Fisher Scientif-
ic. This array consists of a two-peg design. Multiple inclusion criteria
were used for markers on the MADCaP Array, including: enrichment

for GWAS loci, markers near cancer susceptibility loci, prostate
expression quantitative trait loci (eQTL), markers found on other
arrays, and markers tagging African polymorphisms. Note that 38,649
unique markers that are associated with traits and diseases from the
NHGRI-EBI GWASCatalog are included on theMADCaPArray (30).
Using 1000Genomes Project (31) data, we included every SNPwith an
African minor allele frequency (MAF) >0.05 that was located within
50 kb of a known prostate cancer hit or within 5 kb of other cancer
associations. We used the Genotype-Tissue Expression (GTEx V7)
project (32) to identify SNPs that modify gene expression in the
prostate (i.e., prostate eQTLs). The MADCaP Array contains
24,595 prostate eQTLs (P value cutoff for inclusion: 10!9). Markers
were also preferentially included if they overlapped the OncoArray or
H3Africa Array. Working with Thermo Fisher Scientific, a GWAS
backbone was built using Applied Biosystems Axiom genotyping array
technology by iteratively selecting markers that maximized the ability
to impute African genetic variation. When possible, we used probes
that had a prior track record of working on existing genotyping arrays.
Multiple probes per marker were included for prostate cancer loci and
unvalidated markers. An overlapping set of more than 1000 markers
was chosen to be on both pegs, with priority given to prostate cancer
loci and markers satisfying multiple inclusion criteria. Supplementary
Table S1 lists successfully called markers on the MADCaP Array.

Assessment of imputation performance
Imputation performance of the MADCaP Array was computed

using the African Genome Resource reference panel, comprising of
whole-genome sequence data from 4,956 individuals and 11 popula-
tions of African descent (33). We classified African polymorphisms
with an MAF >0.05 as common SNPs and African polymorphisms
with an MAF between 0.01 and 0.05 as rare SNPs. Imputation was
performed with IMPUTE2 (v2.3.2) software using 10-fold cross-
validation (34). Coverage in each population was calculated as the
proportion of polymorphisms in the African Genome Resource ref-
erence panel in high LD (r2 ≥ 0.8) with markers on the MADCaP
Array.

Biospecimen and DNA quantification
Biospecimens were obtained with informed consent using pro-

tocols approved from each study site's Institutional Review Board/
Ethics Review Board. Written-informed consent was obtained from
patients, and studies were conducted in concordance with recog-
nized ethical guidelines (the Declaration of Helsinki and the U.S.
Common Rule). Blood samples were collected in EDTA vacutainer
tubes and stored at either!20"C or!80"C. DNA was isolated using
QIAamp DNA Blood kits. A total of 1.8 to 3.0 mg high-purity DNA
at a concentration of 30 to 50 ng/mL per sample was submitted for
genotyping. DNA was transferred from study sites to genotyping
laboratories using BioMatrica DNAStable 2D barcoded plates.
Samples were then rearrayed into plates using a BioMicroLab XL20
at a minimum concentration of 10 ng/mL in 50 mL. All samples were
run on the Infinium QC array and the MADCaP Array. Plate maps
used a randomized block design to control for study site and case
versus control status.

SNP calling, QC, and data curation
Standard quality control (QC) procedures for Axiom genotyping

data analysis were performed (35, 36). Sample preprocessing was
performed according to guidelines provided in the Thermo Fisher
Scientific Axiom Genotyping Solution Data Analysis Guide (36). The
custom MADCaP Array is based on a two-peg design. Peg 1 contains
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852,610 probe sets, covering 801,275 markers. Peg 2 contains 790,524
probe sets, covering 790,170 markers. Note that 1,902 probe sets
overlap both pegs. Raw data CEL files, representing more than
802 samples, as well as 28 technical replicates and additional
controls, were imported into the Axiom Analysis Suite (AxAS)
version 4.0.3.3 for filtering of sample call rate and clustering of
SNP genotype calls. Samples with DishQC ≥0.82 and a QC call rate
>97% were included for downstream genotyping analysis. A full list
of Axiom QC thresholds is included in Supplementary Table S2.
The Centre for Proteomics and Genomics Research in Cape Town,
South Africa, and the Center for Inherited Disease Research at
Johns Hopkins University independently assessed QC metrics for
each probe set.

Data from both pegs of the MADCaP Array were merged. PLINK

Identification of divergent loci via population branch statistics
calculations

Population branch statistics (PBS) were calculated as per Yi and
colleagues (39). Data from multiple MADCaP study sites were
pooled to yield allele frequencies for three populations: Senegal
(HOGGY), Ghana & Nigeria (37 Military, KBTH, UATH,
and UCH), and South Africa (WITS and SU). Genetic distances
between pairs of populations were calculated using Weir and
Cockerham0s Fst (40). We then calculated PBS scores for three
different branches:

PBSSenegal

¼
! ln 1! FST;sn!za

! "
! ln 1! FST;sn!gh&ng

! "
þ ln 1! FST;za!gn&ng

! "

2
ðAÞ

PBSGhana & Nigeria

¼
! ln 1! FST;sn!gh&ng

! "
! ln 1! FST;za!gh&ng

! "
þ ln 1! FST;sn!za

! "

2
ðBÞ

PBSSouth Africa

¼
! ln 1! FST;sn!za

! "
! ln 1! FST;za!gh&ng

! "
þ ln 1! FST;sn!gh&ng

! "

2
ðCÞ

Subscripts refer to country codes: sn for Senegal, gh for Ghana, ng
forNigeria, and za for SouthAfrica. Undefined and negative values of
Weir and Cockerham0s Fst were treated as zero, and undefined or
negative PBS scores were also treated as zero. PBS scores
were calculated for 2,477 unique markers from the NHGRI-EBI
GWAS Catalog (30) that yield 3,557 cancer and cancer-related
associations.

Calculation of PRS
PRS were built using a curated set of 139 prostate cancer–associated

loci. Schumacher and colleagues previously developed a 147-loci PRS
for prostate cancer (10), and 116 of these 147 markers are on the
MADCaP Array. Proxies were found for 23 of the remaining 31
markers by identifying markers on the MADCaP array in LD with
loci from the Schumacher PRS (r2 > 0.4). Alleles at proxy markers that
tag increased prostate cancer risk were inferred using LDlink (41).
Supplementary Table S3 lists markers used to generate the PRS
described here.

As per Schumacher and colleagues (10), effect size information was
incorporated into PRS calculations. For each locus, we counted
whether an individual has 0, 1, or 2 copies of the risk-increasing allele
(i.e., the allele dose gi,j for locus i in individual j).Here, we used adjusted
effect sizes: bi ¼ lnðORiÞ ' ri2, where effect sizes from Schumacher
and colleagues (10) are scaled by how well proxy markers tag each
disease-associated locus. Doses of risk-increasing alleles were weighted
by adjusted effect sizes and summed across all 139 loci to generate a raw
PRS for each individual.

PRSj ¼
X139

i¼1

gi;jbi ðDÞ

PRS were calculated for 802 MADCaP samples and 240 male
European samples from 1000 Genomes Project (31). Standardized

MADCaP Array and Prostate Cancer in Africa

was used to remove markers with low call rates (marker missingness > 
5%). PLINK was also used to exclude samples that were poorly called 
(sample missingness > 2%) or related (identity-by-descent > 0.5). 
Multi-allelic SNPs were excluded from downstream analyses. After 
filtering, 1,513,172 markers and 802 samples were used in subsequent
analyses. This MADCaP pilot dataset contains 399 prostate cancer
cases and 403 controls. Details of MADCaP case and control 
recruitment have been previously reported (29).

Array comparisons
We compared markers on arrays developed by the MADCaP 

Network, the OncoArray Consortium (27), and the H3Africa 
Consortium (28). Genomic positions from the MADCaP Array, 
Infinium Oncoarray, and H3Africa Array were intersected to 
determine overlapping markers. The liftOver bioinformatics tool 
was used to convert all genomic positions to build GRCh38/hg38 of 
the human reference genome. Derived allele frequencies (DAF) for 
each array were calculated as described previously (26). This 
involved obtaining allele frequencies from the five continental 
populations of the 1000 Genomes Project (31): Africa (AFR), 
Americas (AMR), East Asia (EAS), Europe (EUR), and South Asia 
(SAS). Calculations used 450,000 markers that were selected with-
out replacement from each array (only markers with 1000 Genomes 
Project data were considered here). The joint allele frequency 
distribution of markers on the MADCaP Array was found by 
comparing African and pooled non-African data.

MDS and ADMIXTURE
Using PLINK, we obtained an LD-pruned subset of 25,000 

autosomal SNPs for 802 samples (MAF > 0.05, r2 < 0.8). The same 
subset of SNPs was used for multidimensional scaling (MDS) and 
ADMIXTURE analyses. Two-dimensional MDS plots were gener-
ated using PLINK and R. ADMIXTURE software (37) was run for
K ¼ 2 through  K ¼ 5. Cross-validation was performed to determine
the optimal K value.

Runs of homozygosity and LD decay
As per Schlebusch and colleagues (38), runs of homozygosity were 

identified using PLINK for homozygous lengths between 500 kb and 
1,000 kb. This analysis was repeated for all 802 samples in the 
MADCaP dataset. Individual runs of homozygosity were summed to 
yield the cumulative runs of homozygosity (cROH) for each sample. 
For each study site, PLINK v1.90b6.9 was used to calculate LD between 
all variants with an MAF >0.10. These calculations were made for all 
pairs of markers within 100 kb and 100 marker windows. For each 
study site, the mean r2 between pairs of genetic variants was calculated 
for 1 kb bins.
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PRS values were then generated for all 1,042 individuals by scaling raw
PRS values to have a mean of zero and SD of one.

Statistical methods
Wilcoxon rank-sum tests were used to compare DAF distributions,

ADMIXTURE proportions, runs of homozygosity, and PRS distribu-
tions. We corrected for multiple statistical tests using the Benjamini–
Hochberg approach (42). An FDR of 0.05 was used to generate
adjusted P values shown in Supplementary Table S2. Two sample
Z-tests were used to compare allele frequencies for different African
countries.

Results
Imputation using the MADCaP Array

Using whole-genome sequences, we quantified the extent to which
the MADCaP array tags African genetic variation (Fig. 1). Depending
on the population, 94% to 99% of common African SNPs were
successfully tagged by the MADCaP Array (r2 ≥ 0.8, MAF > 0.05).
TheMADCaPArray also tagged 63% to 97%of rare African SNPs (r2≥
0.8, MAF between 0.01 and 0.05). Note that 98% of common variants
and 79% to 83% of rare variants in admixed African-Caribbean and

African-American genomes are in high-LD (r2 ≥ 0.8) with markers on
the MADCaP Array. A larger fraction of Ugandan genetic variation
than Ethiopian and KhoeSan variation is captured by this array.
Regardless of population, the MADCaP Array successfully tags a large
fraction of African genetic variation.

Comparisons with other arrays
Many of the markers on the MADCaP Array are shared with the

Infinium OncoArray and the H3Africa Array (Fig. 2A). Overall,
73,019 markers are included on all three arrays. Note that 131,469
markers are shared between the MADCaP Array and the OncoArray,
and 398,460 markers are shared between the MADCaP Array and the
H3AfricaArray. This overlapwill facilitate data harmonization and the
ability to combine genotype information from different arrays into the
same study.

We compared the DAF of markers found on the MADCaP,
OncoArray, and H3Africa arrays, using continental allele frequencies
from the 1000 Genomes Project (Fig. 2B). The null expectation here is
that the mean DAF should be the nearly identical for each population
because all humans are evolutionarily equidistant to other primates.
Mean DAFs of markers on the MADCaP Array are similar for each
continental population (Fig. 2B), suggesting that the MADCaP Array
is relatively unbiased with respect to SNP selection. By contrast, mean
DAFs of markers on the OncoArray and H3Africa Array are notably
lower for African populations than non-African populations—a pat-
tern that is indicative of SNP ascertainment bias (26). Differences
between populations are statistically significant (Benjamini–Hochberg
adjusted P values >2.2 ' 10!16, Wilcoxon rank-sum tests), and mean
andmedianDAFs are listed in Supplementary Table S2. Examining the
joint site frequency spectrum of non-African and African populations,
we find that the MADCaP Array is enriched for markers that are
polymorphic in Africa but monomorphic outside of Africa, but not
vice versa (Fig. 2C).

Densities of markers found in different genomic regions vary by
genotyping array.Here, we focus on 8q24, a cancer-associated genomic
region that contains PCAT2, CCAT2, and the proto-oncogene MYC.
Numbers of markers per 100 kb are shown for three different arrays
in Fig. 2D. TheMADCaP Array contains a moderately high density of
markers across the genome, with peaks near known cancer-associated
loci. Neighboring markers on the MADCaP Array have a median
distance of 856 bp and ameandistance of 2,082 bp. TheOncoArray has
higher marker densities near cancer-associated loci compared with
other parts of the genome. By contrast, the H3Africa Array has a
moderately even density of markers across the entire genome. A total
of 3,082 markers on the MADCaP Array, 2,349 markers on the
H3Africa Array, and 1,057 markers on the OncoArray overlap known
cancer associations from the NHGRI-EBI GWAS Catalog (accessed
September 11, 2019). Focusing on 100 kb genomic windows centered
around 147 known prostate cancer loci (10), we find that theMADCaP
array contains 28,422 markers flanking prostate cancer loci, as
opposed to 14,959 flanking markers on the H3Africa Array and
11,290 flanking markers on the OncoArray (Supplementary Table S3)

Efficacy of the MADCaP Array
We tested the efficacy of the MADCaP Array by genotyping 802

individuals from seven MADCaP study sites (Fig. 3A): the Hôpital
G!en!eral de Grand Yoff/Institut de Formation et de Recherche en
Urologie in Dakar, Senegal (HOGGY), 37 Military Hospital in Accra,
Ghana (37 Military), Korle-Bu Teaching Hospital in Accra, Ghana
(KBTH), University College Hospital in Ibadan, Nigeria (UCH),
University of Abuja Teaching Hospital in Abuja, Nigeria (UATH),

Figure 1.
Successful tagging of African SNPs using the MADCaP Array. Proportions of
SNPs in 11 populations of African ancestry that are successfully tagged by
markers on theMADCaPArray are shown (r2≥0.8). Here, common SNPs have an
MAF >0.05, and rare SNPs have an MAF between 0.01 and 0.05.Q6
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WITS Health Consortium/National Health Laboratory Services in
Johannesburg, South Africa (WITS), and Stellenbosch University in
Cape Town, South Africa (SU). Sample accrual was restricted to
individuals with sub-Saharan African ancestry; admixed individuals
with European ancestry from Cape Town were excluded. Of the
MADCaP samples analyzed herein, 399 are prostate cancer cases and
403 are controls (Table 1).

Note that 94.9% of the markers on peg 1 and 95.9% of the markers
on peg 2 passed QC filtering. By contrast, approximately 533,00 out of
600,000 (88.8%) markers on the OncoArray were successfully man-
ufactured (27). For both peg 1 and peg 2, mean call rates, reproduc-
ibility, and concordance all exceeded 99.5%, and only a small subset of
markers had Mendelian inconsistencies (Supplementary Table S2).
These genotyping metrics indicate that the MADCaP Array is an
effective genotyping platform.

Population structure and genetic admixture
Weused two-dimensionalMDS plots to detect population structure

among MADCaP samples and study sites. Individuals with similar
genomes are located close to one another in MDS space. MADCaP
samples fall into three broad clusters in Fig. 3B: Senegalese individuals
(gold) are found in the bottom left, Ghanaian andNigerian individuals
(green) are found in the top left, and South African individuals (blue)
are found in the top right. Nigerians from Ibadan (UCH, light green)

are closer in MDS space to Ghanaian individuals than Nigerians from
Abuja (UATH, dark green). The right-to-left gradient of blue points in
MDS space suggests that some individuals from South Africa share a
fraction of their genetic ancestry with present-day Nigerians. Rotating
the MDS plot 85 degrees clockwise reveals that genes mirror geogra-
phy, at least for the African populations analyzed in our study
(Fig. 3C). Samples from geographically close locations tend to share
greater amounts of genetic similarity.

ADMIXTURE plots reveal shared ancestry among MADCaP sam-
ples (Fig. 3D). In these plots, individuals are linear mixtures of
multiple genetic ancestries—indicated by different colors. Cross-
validation error is minimized at K ¼ 3, i.e., the best fit to the data
occurs for three ancestry colors (Supplementary Fig. S1). At K¼ 2, we
are able to distinguish between West African and South African
populations. Setting K ¼ 3 reveals three major ancestry clusters: gold
in Senegal, green in Ghana and Nigeria, and blue in South Africa. At K
¼ 4 ancestry patterns match each country. Intriguingly, individuals
from Ibadan, Nigeria (UCH), share ancestry with samples from
Ghana, i.e., they contain moderate amounts of light green ancestry
at K ¼ 4. Similarly, individuals from Johannesburg, South Africa,
contain traces of genetic ancestry that are primarily found in Nigeria
(dark green), perhaps due to the Bantu expansion during the last
5,000 years (43). K¼ 5 reveals evidence of population structure within
South Africa, with greater proportions of light blue ancestry found

Figure 2.
Comparisons between theMADCaPArray, InfiniumOncoArray, andH3Africa Array.A,Venn diagram showing overlap betweenmarkers on each array. Sizes of circles
areproportional to the number ofmarkers oneach array.B,Violin plots indicateDAFdistributions ofmarkers on theMADCaPArray, InfiniumOncoArray, andH3Africa
Array. Continental allele frequencies from the 1000 Genomes Project are shown here. Horizontal black lines indicate the mean DAF for each array and population
combination. C, Joint site frequency spectrum of markers on the MADCaP Array. African and pooled non-African allele frequencies from 1000 Genomes Project are
shown here. Shading indicates the number of markers on the MADCaP Array that are in each bin. D, Density of markers per nonoverlapping 100 kb window at 8q24.
Genes in the zoomed-in region are shown.

MADCaP Array and Prostate Cancer in Africa
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in Johannesburg (WITS) compared with Cape Town (SU). Both
study sites from Accra, Ghana (37 Military and KBTH), have similar
genetic ancestry profiles. Finally, we note that cases and controls
for each study site are ancestry-matched (Benjamini–Hochberg
adjusted P values > 0.674, Wilcoxon rank-sum tests, Supplementary
Table S2). On a genome-wide scale, individuals in theMADCaP study
with prostate cancer have similar ancestry proportions compared with
healthy MADCaP controls.

Runs of homozygosity and linkage disequilibrium
Runs of homozygosity are stretches of DNA where maternally and

paternally inherited haplotypes are identical. Using the MADCaP

array, we quantified cROH in each genome (Fig. 4A). Although
there is heterogeneity within each study site, cROH are smaller
for South African genomes than Senegalese, Ghanaian, or Nigerian
genomes analyzed in this study (Benjamini–Hochberg adjusted
P values < 0.0132, Wilcoxon rank-sum tests, Supplementary
Table S2). This lower homozygosity can either be due to large historical
population sizes or admixture.

To distinguish between each of these hypotheses, we calculated
LD decay curves for each of the seven MADCaP study sites
(Fig. 4B). Populations with small effective population sizes have
more LD than populations with large effective population sizes (44).
Admixture also increases the amount of LD (45). In general, we

Figure 3.
TheMADCaP Array reveals population structure and shared genetic ancestries among urban African study sites.A,Geographic locations of eachMADCaP study site.
B, Two-dimensional MDS plot of 802 MADCaP samples. Senegalese samples are represented by gold circles, Ghanaian and Nigerian samples are represented by
green circles, and South African circles are represented by blue circles. C, Genes mirror geography when the two-dimensional MDS plot is rotated 85" clockwise. D,
ADMIXTURE plot of 802 MADCaP samples. The best fit to genetic data occurs at K ¼ 3.

Table 1. Numbers of cases and controls from each study site.

Study site Location Cases Controls

Hôpital G!en!eral de Grand Yoff (HOGGY) Dakar, Senegal 56 59
37 Military Hospital (37 Military) Accra, Ghana 59 59
Korle-Bu Teaching Hospital (KBTH) Accra, Ghana 53 58
University College Hospital (UCH) Ibadan, Nigeria 56 56
University of Abuja Teaching Hospital (UATH) Abuja, Nigeria 56 57
WITS Health Consortium (WITS) Johannesburg, South Africa 61 61
Stellenbosch University (SU) Cape Town, South Africa 58 53
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observed less LD for South African sites than other study sites
(WITS and SU in Fig. 4B). These differences in LD decay curves do
not appear to be due to admixture, because the South African
populations studied here have similar levels of admixture to other
African populations (Fig. 3D). Overall, the data in Fig. 4 support
the idea that historic population sizes were larger in South Africa
than West Africa. One implication of the smaller haplotype blocks
that are found in genomes from Johannesburg and Cape Town is
that GWAS using these samples will require arrays with high
densities of markers, a characteristic that is shared by the MADCaP
Array.

Divergent allele frequencies at cancer-associated loci
Risk allele frequencies at cancer-associated loci can vary across

populations. Here, theMADCaPArray was used to identify previously
published loci that have large allele frequency differences across Africa.
PBS scoreswere calculated for all observed cancer-associated loci in the
NHGRI-EBI GWAS Catalog that have markers on the MADCaP
Array, as well as loci associated with other cancer-related traits
(e.g., skin pigmentation and smoking). These scores were calculated
for three different evolutionary branches: Senegal (Fig. 5A), Ghana &
Nigeria (Fig. 5B), and South Africa (Fig. 5C). Here, prostate cancer
hits used in PRS calculations are represented by black points, whereas
gray and colored points indicate other cancer-associated loci. Note that
Y axes in these Manhattan plots quantify evolutionary branch lengths,
not statistical strengths of association. Also note that 99th percentiles
of PBS scores for all markers on theMADCaP array are represented by
dashed lines. Supplementary Table S3 contains PBS scores and allele
frequencies for 139 prostate cancer markers used in MADCaP PRS
calculations. Supplementary Table S4 contains PBS scores and allele
frequencies for 2,477 markers that are associated with cancer and
cancer-related traits.

All three branches contain loci with high PBS scores in the MHC/
HLA region on chromosome 6. For example, rs3817963 has the top
PBS score for the Senegalese branch (Fig. 5A). This SNP at 6p21.32
has been associated with lung adenocarcinoma (46). The risk-
increasing allele at rs3817963 has an allele frequency of 33.9% in
Senegal, 12.9% in Ghana, 10.4% in Nigeria, and 8.4% in South Africa
(P values <0.0001 for pairwise comparisons between Senegal and
other countries, two sample Z-test). Another cancer-associated
variant that has large allele frequency differences between African
populations is rs2294008, located at 8q24.3. This SNP has the
second highest PBS score for the South African branch, and it has
previously been associated with bladder and gastric cancer (47). The
risk-increasing allele at rs2294008 has an allele frequency of 28.7%
in Senegal, 35.7% in Ghana, 28.8% in Nigeria, and 54.8% in South
Africa (P values <0.0001 for pairwise comparisons between South
Africa and other countries, two sample Z-test).

Some previously known prostate cancer–associated loci have large
allele frequency differences between African populations, whereas
other loci have allele frequencies that vary little across the continent.
For example, rs5919432 is a prostate cancer–associated SNP that is
located 71 kb from the androgen receptor gene at Xq12 (48). This SNP
has the highest X-linked PBS score in Fig. 5C. The risk-increasing T
allele at rs5919432 is more common in MADCaP cases than controls
(34.2% vs. 32.1%), and South Africans have elevated risk allele
frequencies at this SNP (Fig. 5D). 8q24.21 contains multiple loci that
have been associated with prostate cancer in European men,
including rs6983267 (10). Although the risk-increasing G allele at
rs6983267 is more common in MADCaP cases than controls (98.2%
vs. 97.9%), there are only minimal allele frequency differences
between African populations at this SNP (Fig. 5E). The risk allele
at rs6983267 is found at 50.0% in Europe (1000 Genomes Project
data). This pattern suggests that although rs6983267 contributes to
continental-level differences in prostate cancer risk, it has only a
minimal effect on population-level differences in prostate cancer
risk within sub-Saharan Africa.

The MADCaP pilot dataset also yields novel prostate cancer
associations to be followed-up in subsequent studies. The SNP with
the largest allele frequency difference between cases and controls is
rs7063314 (located near the SPANX family of spermatogenesis genes
at Xq27.2). MADCaP cases have elevated frequencies of the C allele at
rs7063314, and this allele is associated with reduced expression of

Figure 4.
Runs of homozygosity and LD decay curves vary by African study site. A, cROH
500 kb to 1,000 kb in length for each MADCaP sample, labeled by study site.
Median cROH for each study site are indicated by horizontal lines in this jitter
plot. B, LD decay curves for each study site. Gold indicates Senegalese data,
green indicates Ghanaian and Nigerian data, and blue indicates South African
data. South African study sites have less LD than West African study sites
(Senegalese data overlaps Ghanaian and Nigerian data).
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SPANXC and SPANXA2-OT1 genes in testis (32). Other outlier loci to
be followed-up in future studies include rs2188886, rs5980062,
rs5977191, rs73119086, and rs5755469.

Predicted risks of prostate cancer in African populations
Using the MADCaP Array, we tested whether polygenic risks of

prostate cancer vary by population. For each individual, PRS were
calculated by counting risk alleles at 139 prostate cancer–associated
loci and weighting by effect size. Higher PRS values indicate that an
individual has a higher predicted risk of prostate cancer. Fig. 6
compares PRS distributions for seven African study sites as well as
European men from the 1000 Genomes Project, and median PRS
values for each population are indicated by filled rectangles. Overall,

we find that predicted risks of prostate cancer are much greater for
African genomes than European genomes (Benjamini–Hochberg
adjusted P values <1.7 ' 10!6, Wilcoxon rank-sum test). This con-
tinental-level pattern is consistent with public health data (2). Differ-
ences in predicted prostate cancer risks between European andAfrican
populations exceed differences in predicted risk within Africa. There is
a substantial amount of overlap in the PRS distributions of different
African populations. Despite this similarity, we observe within-
continent heterogeneity for the predicted risk of prostate cancer. The
rank order of MADCaP study sites from lowest to highest predicted
risk of prostate cancer is: HOGGY, KBTH, WITS, SU, UCH, 37
MILITARY, UATH. Individuals from Dakar, Senegal (gold
in Fig. 6), have lower predicted risks of prostate cancer than other

Figure 5.
PBS scores identify previously published cancer-associated loci that have large allele frequencies in Africa. Prostate cancer (CaP) associations from the Schumacher
and colleagues GWAS (10) are represented by black points, and other cancer-associated loci are represented by gray and colored points. Y axes in each Manhattan
plot quantify evolutionary branch lengths, not statistical strengths of association. Note that 99th percentiles of PBS scores for all markers on the MADCaP array are
represented by dashed lines.A, PBS scores for the Senegal branch.B, PBS scores for the Ghana &Nigeria branch.C, PBS scores for the South African branch.D,Allele
frequencies at the prostate cancer–associated SNP rs5919432 vary greatly across Africa. E, Allele frequencies at the prostate cancer–associated SNP rs6983267 are
similar across Africa.
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African study sites. Conversely, individuals from Abuja, Nigeria (dark
green in Fig. 6), have higher predicted risks of prostate cancer than
other African study sites. Some of these differences are statistically
significant: Benjamini–Hochberg adjusted P values are 3.25' 10!2 for
HOGGY versus UCH, 1.14' 10!3 for HOGGY versus UATH, 3.25'
10!2 for KBTH versus UATH, 4.32 ' 10!2 for WITS versus UATH,
and 3.70 ' 10!2 for SU versus UATH, (pairwise Wilcoxon rank-sum
tests, Supplementary Table S2). Rare genetic variants with large effect
sizes (e.g., rs183373024 and rs1447295) contribute to the wide tails of
each PRS distribution in Fig. 6. Taken together, these results suggest
that allele frequency differences at common disease-associated loci can
contribute to population-level differences in prostate cancer risk.

Discussion
Using the Axiom genotyping solution, the MADCaP Network

has developed a two-peg array that is optimized for studying the
genetic basis of prostate cancer in men of African descent. This
array successfully tags common and rare variation in African
genomes (Fig. 1). Genomes of northeast African populations
contain admixture with non-African populations (49), and this
may contribute to less effective capture of Ethiopian genetic var-
iation. The MADCaP Array combines the strengths of the Infinium
OncoArray and the H3Africa Array, while maintaining excellent
genotyping metrics for diverse African samples. The MADCaP
Array will enable novel disease associations to be discovered and
existing cancer associations to be fine-mapped. The 1.5 million
markers described in Supplementary Table S1 are also likely to be of
use to researchers developing their own custom genotyping arrays.
Applying the MADCaP Array to over 800 African samples, we
infer details of population structure, identify loci that contribute to
population-level differences in cancer susceptibility, and generate
personalized predictions of prostate cancer risk. These findings
demonstrate that the MADCaP Array is an effective technology
for inferring the population genetics of cancer risks in sub-Saharan
Africa.

Sub-Saharan Africa contains substantial amounts of genetic diver-
sity (33, 38, 49), and this contributes to population-level heterogeneity
in cancer risks. For the study sites analyzed here, we found that
genomes tend to fall into three distinct clusters (Fig. 3B). These
clusters broadly match geography: samples from Senegal display
similar genetic profiles, samples from Ghana and Nigeria cluster

together, and samples from different locations in South Africa cluster
together. We also found evidence that the genomes of African indi-
viduals contain mixtures of divergent genetic ancestries (Fig. 3D) and
that South African study sites have larger effective population sizes
than West African study sites (Fig. 4). Clearly, a one-size-fits-all
approach is suboptimal when it comes to the genetics of African
populations. The genetic heterogeneity of African populations calls for
genotyping arrays that accurately capture African polymorphisms.

Genetic risks of cancer have changed during human history (50),
and our analysis identified many cancer-associated loci with large
allele frequency differences between African populations (Fig. 5;
Supplementary Tables S3 and S4). There are multiple evolutionary
reasons why allele frequencies at cancer-associated loci can differ
across human populations. These causes include neutral processes
like genetic drift and population bottlenecks. Natural selection can also
contribute to large allele frequency differences between populations,
either directly or indirectly via genetic hitchhiking (20). Regardless of
the specific cause, differences in allele frequencies at cancer-associated
loci can lead to population-level differences in disease risks, as
observed in Fig. 6. However, we note that differences in PRS distribu-
tions between populations can either be due to real differences in risk
or due to SNP ascertainment bias (26). As SNP-based heritability is a
function of allele frequency, loci that are important to disease risks in
one population need not contribute much to SNP-based heritability in
other populations. Africa is not monomorphic when it comes to the
genetic risk of prostate cancer, and there is a clear need to conduct
studies that cover a broad range of populations.

Genotyping tools such as the MADCaP Array will enable novel
cancer associations to be discovered in historically understudied
African populations. Smaller LD blocks in African populations will
also aid in fine-mapping of disease associations. Only by genotyping
diverse study cohorts can researchers assess how well polygenic
predictions of cancer risks are able to be generalized from large
European study cohorts to the rest of the world.
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